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Abdibekova A., Zhakebayev D., Zhubatov Zh.  

or 

MODELLING OF TURBULENCE ENERGY DECAY BASED ON HYBRID 

METHODS 

1Abdibekova A.U., 2Zhakebayev D.B., 3Zhubatov Zh. 

1 2Al-Farabi Kazakh National University, 1a_aigerim@inbox.ru, 2daurjaz@mail.ru 

3Scientific-Research Center «Garysh-Ecology», infracos-kaz@mail.ru 

Abstract 

Purpose  

The purpose of this paper is to present an exact and fast calculated algorithm based on 

two different methods: finite-difference and spectral methods for modelling of turbulent 

energy decay. 

Design/Methodology/approach 

The filtered three-dimensional non-stationary Navier-Stokes equation is used for 

simulation the turbulent process. The problem is solved by using hybrid methods, where 

the equation of motion is solved by using finite-difference methods in combination with 

cyclic penta-diagonal matrix, which allowed to reach high order of accuracy and Poisson 

equation is solved by using the spectral methods, which is proposed to speed up the 

solution procedure. For validation of the given algorithm the turbulent characteristics 

were compared with the exact solution of classical problem of Taylor and Green vortex 

and showed good agreements. 

 

Findings 

It shows high computational efficiency and good estimation quality. 

The numerical algorithm of solving non-stationary three-dimensional Navier-Stokes 

equations for modelling of isotropic turbulence decay with using hybrid methods was 

developed. The numerical simulation results in obtaining turbulence characteristics show 

good agreements with analytical solution. The developed numerical algorithm can be 

used for simulation of the turbulence decay at the different properties of the viscosity. 

 

Originality/value  
The efficient algorithm for simulation turbulence process depending on the properties of 

the viscosity was developed. 

 

Keywords: Taylor –Green vortex, turbulence decay, cyclic penta-diagonal matrix. 
 

Introduction 

Rapidly developing computing technologies and new software packages are proposing 

more requirements to the modeling of physical processes to obtain the corresponding 

actual physical paintings and the most accurate results. The problem solutions of 

hydrodynamics, magnetohydrodynamics and other areas with enough large system of 

equations with special boundary conditions are encountered, that take a long time for 

calculations, where at times the solution may be unsatisfactory. Thereby, the construction 

of sufficiently flexible, high-speed and high-precision algorithms for computer 

calculations is an urgent problem.  

In the solution was suggested using classical example proposed by Taylor and Green. 

Taylor-Green vortex combinations of words have come into sight after presentation of 

the work [1], first published a method for successive approximations to formula 

mailto:a_aigerim@inbox.ru
mailto:2daurjaz@mail.ru
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describing three dimensional turbulence evolution over time. There was considered the 

decay of three dimensional turbulence flow produced in wind tunnel, where was 

represented the effect of the fundamental process in turbulent flow, to wit, the grinding 

down of eddies, produced by solid obstructions. In result the kinetic energy and the 

dissipation rate of turbulent decay were defined analytically.  

Many works of the Taylor-Green vortex problem investigated from the numerical side. 

One of them was referred in [2], where the Taylor- Green vortex problem was studied by 

two methods: spectral numerical solution and power-series analysis in time computed. In 

the result of simulation the energy simulation and spectra energy at different Reynolds 

number were presented and compared. Later, in [3] three dimensional Navier –Stockes 

equations was numerically integrated with setting periodic Taylor-Green initial condition 

and simulated at high Reynolds numbers. In the direct numerically simulation result the 

slope of energy spectrum was compared with 5/3 Kolmogorov’s value. Moreover, 

compressible Navier-Stockes equation was applied to the Taylor-Green vortex problem 

[4] with using wave resolving  large eddy simulation. Numerical scheme investigations 

were setting up at different resolution of grid. Eventually, the dissipation rate of kinetic 

energy and evolution of kinetic energy were compared at different grid size. However, in 

all these observed work  the comparison results of turbulent characteristics, such as 

dissipation rate and kinetic energy with exact analytically solution were not fully 

reflected. 

This work deals with the modelling of turbulent energy decay using two methods: finite-

difference and spectral methods. To simulate the turbulent process the filtered three-

dimensional non-stationary Navier-Stokes equation is used. The problem is solved by 

using  hybrid methods, where the equation of motion is solved by using finite-difference 

methods in combination with cyclic penta-diagonal matrix, which allowed to reach high 

order of accuracy and to simulate turbulence decay  at high Reynolds number 
410Re  , 

and spectral methods is used for solution of Poisson equation, which is makes it possible 

to gain the time. For validation of the given algorithm the classical problem of Taylor and 

Green for modeling of isotropic turbulence decay was solved. 

Analitical solution of Taylor-Green vortex problem 
We duplicate classical example proposed by [1] to reconsider through use of numerical 

simulation for increasing the order of accuracy in time and in space ),( 43 htO  and also to 

getting efficient acceleration for sequential algorithm. Starting from a simple 

incompressible three-dimensional initial condition of the form 

 

.0)0,,,(

),sin()(cos)sin()0,,,(

),sin()sin()cos()0,,,(

3213

3213212

3213211







txxxu

axxaaxtxxxu

axxaaxtxxxu

 

 

and assuming periodic conditions in a cubic domain: ,20 1  x ,20 2  x

,20 3  x  the three dimensional Navier-Stokes equation  
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can be solved analitically at small times, using petrubation expansion. At (1) all quantities 

have been proparly normalized by the initial maximum velosity magnitude 0U  in the 1x  

or 2x  direction, and 2/L  , where L  is the physical domain size, iu -velocity at 3,2,1i

, corresponding to 321 ,, xxx  directions, vLU /Re 0  is the Reynolds number of flow, 

0U - the characteristic velocity, ./2,0 LataUT   The pressure p  has been 

normalized by 2

0U .  

Taylor Green obtained petrubation expansion of the velocity field, up to )( 5tO . The 

kinetic energy equation is looks like: 
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The dissipation rate is writing in the following form: 
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Numerical solution of Taylor-Green vortex problem 
In this paper a three-dimensional non-stationary Navier-Stokes equation is solved for 

modelling of isotropic turbulence decay. For solving the Navier–Stokes equation, we use 

a splitting scheme by physical parameters that consists of three stages of Adams Bashforth 

method [5]. 

At the first stage, the equation for motion is solved, without taking pressure into the 

account. For approximation of the convective and diffusion terms of the intermediate 

velocity field the finite-difference methods in combination with cyclic penta-diagonal 

matrix is used [6], which allowed to increase the order of accuracy in time and in space 

),( 43 htO  without changing the amount of points.  
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The intermediate velocity field is solved by using the Adams Bashforth scheme in 

combination with a five-point sweep method. 

Lets considered the horizontal component of the velocity 1u  components in the point  of 
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In the application of the scheme Adams Bashforth equation (2) takes the form: 

 

     n
jki

n

jki

n

jki

n

jki

n

jki
axhxphxuu

2

1

1

2

1

2

1

2

11

1

2

11
22

3
ˆ










 


 

1

2

1
2

3

1

2
1

2

1
2

2

1

2
1

2

1
2

1

1

2 ˆ

Re

1

2

ˆ

Re

1

2

ˆ

Re

1

2




































































n

jki

n

jki

n

jki
x

u

x

u

x

u 
        (3) 

where 

 

 

 

 

















































































































































































n

jki

n

jki

n

jki

n

jki

n

jki

n

jki

n

jki

n

jki

n

jki

n

jki

n

jki

n

jki

x

u

x

u

x

u
ax

x

uu

x

uu

x

uu
hxp

x

uu

x

uu

x

uu
hx

2

1
2

3

1

2

2

1
2

2

1

2

2

1
2

1

1

2

2

1

1

2

13

31

1

2

12

21

1

2

11

111

2

1

2

13

31

2

12

21

2

11

11

2

1

Re

1

2

1

 

 

Then the left side of equation (3) is denoted by 
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u  from the equations (3) we obtain 
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We present the equation (5) in view of 
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To obtain the second order of accuracy with respect to time, we will solve the following 

equation: 
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To determine 
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 the equation (7) is solved in 3 stages.  
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At the first stage 
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 sought in the direction coordinates 1x : 
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This equation (8) is solved by the cyclic penta - diagonal  matrix method, the result of 

which the 
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This equation (9) is solved by cyclic penta - diagonal matrix method, as a result of which 

the 
1

2

1





n
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B  is defined. 

At the third stage 
jki

q
2

1


 is sought in the direction of the coordinates 3x : 
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The equation (10) is solved by the cyclic penta - diagonal matrix method, the result of 

which the 
1

2

1





n

jki
q  is found. 

Once we have determined the value 
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The velocity components 
1
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ˆ





n
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u  and 
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13
ˆ





n
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u  are found similarly. 

At the second stage the Poisson equation is solved, which is satisfies the continuity 

equation with considering the velocity field from the first stage. The Poisson equation is 

translated from the physical space into the phase space by using a Fourier transform and 

solved with using spectral method. 

To solve the three-dimensional Poisson equation is used the Fourier transform, which 

consists of several steps. The resulting intermediate velocity field does not satisfy the 

continuity equation. The exact expression for the new velocity field is obtained by adding 

to the intermediate field the term corresponding to the pressure gradient: 
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Substituting the data in the continuity equation and carrying out the transformation, we 

obtain the Poisson equation for the pressure field: 
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The equation for pressure is approximated at the point i, j, k takes the following form: 
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Pressure ijkP  in the physical space goes into the next phase using next dysfunctional: 
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Boundary conditions are taken as periodic for Poisson equation. For solving Poisson 

equation we use spectral method in combination with Fourier transform. Substituting (12) 

and (13) expressions in equation (11) and performing transformation in the end we get: 
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At the final stage the inverse Fourier transform is performed to obtain the solution of the 

Poisson equation. The obtained pressure field with using fast Fourier transform is 

translated from the phase space to the physical space and used at  the third stage for  

recalculation the final velocity field 

 

Calculation of turbulence characteristics for Taylor-Green vortex problem 

To determine the turbulent characteristics in a physical space, it is necessary to 

average different values in volume. The averaged values will be used to find the turbulent 

characteristics. The value averaged over the entire calculated area is calculated by the 

following formula: 
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The dissipation rate is calculated by the following formula: 
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The turbulent kinematic energy is found in the following way: 
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Numerical modelling results. The numerical model allowed to describe the isotropic 

turbulence decay based on hybrid methods, using finite-difference methods in 

combination with cyclic penta-diagonal for solving equation of motion and spectral 

methods is used for solution of  Poisson equation.  

For this task, the characteristic values of the velocity and length were taken equal 

to ,10 U and 1L  respectively. The calculation grid 128×128×128 was taken. The 
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2
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)0( 




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



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avUt


  

2
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0

2

Re2
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4

3
)0( 










BL
avUt




  

Table 1. The preset parameters for the comparison results of exact solution with 

numerical solution of vortex problem Taylor –Green  

As the results of the simulation with different Reynolds numbers, the following 

turbulence characteristics were compared with analytical solution of Taylor –Green 

vortex problem: kinetic energy and dissipation rate of turbulent flow.  Fig. 1 presents the 

comparison of the turbulent kinetic energy obtained in this work with the analytical 

solution obtained on the basis solution of Taylor –Green vortex problem at different 

Reynolds numbers: ;300Re)2;100Re)1  3) .600Re  The obtained results shows 

the satisfactory agreement up to 3T . 
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Presented in Fig. 2 the matching results of the dissipation rate of turbulence decay over 

the time  received in this numerical simulation with exact solution of Taylor –Green 

vortex problem at different Reynolds number shows good agreement till ,5.1T because 

the order of accuracy in time is )( 3tO .  

In the simulation results, the average error between analytical and numerical 

solutions was defined, and it was equal to 
410err . 

 

Figure -1. Comparison simulation result of the evolution of kinetic energy over the time with 

direct methods of Taylor –Green vortex at different Reynolds number. 

 

 Figure -2. Comparison simulation result of the dissipation rate of turbulence decay over the 

time with direct methods of Taylor –Green vortex at different Reynolds number.  
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Conclusion  
The numerical algorithm for solving non-stationary three-dimensional Navier-Stokes 

equations for modelling of isotropic turbulence decay with using hybrid methods: finite-

difference and spectral methods with high order of accuracy and the efficiently algorithm 

for parallelization at different Reynolds numbers is developed. The using the finite-

difference methods in combination with cyclic penta-diagonal matrix for solution of 

motion equation allowed to reach high order of accuracy and using spectral methods for 

solution of Poisson equation, makes it possible to gain the time in computation.  For 

validation of the given algorithm the classical problem of Taylor and Green with intial 

parametres for modeling of isotropic turbulence decay was solved. Thus, the numerical 

simulation results in obtaining turbulence characteristics show good agreements with 

analytical solution and the average error 
410err  between analytical and numerical 

solutions was defined. 

Thus, the developed numerical algorithm can be used for simulation of the formation and 

dynamics of clouds with considering the turbulent processes. 

This research was performed in the framework of the project "Development of software 

for modeling the dynamics of clouds formed at ground explosion of the launch vehicle". 
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1. Introduction 

It is known that the conventional Lippmann-Schwinger equation is commonly used for solving of 

wave motion problems in monophysics media such as acoustic, elastic, electromagnetic, optic etc. 

media with inclusions [1]. In multiphysics blocky media, for example: combination of solid with 

porous media (as salt structures with porous fluid-saturated reservoirs), the Lippmann-Schwinger 

equation needs to be generalized for blocky model case. For this, we suggest to use TPOT (the 

Transmission-Propagation Operator Theory) [2]. The generalized equation can be then used for 

solving of wave motion problems in the general 3D multiphysics multi-scale blocky media case 

with curved interfaces. Since this generalized equation has a similar structure to the conventional 

one, its solution can be done by any of the existing solvers, both numerical and analytical.  

2. The generalized Lippmann-Schwinger equation for 3D blocky multiphysics 

multi-scale media  

We consider the IBVP (initial boundary value problem) system of wave motion equations 

for medium with M blocks with a source in the 1st block [2, 3]  

     xD M u f , (1) 

where u  is the wavefield, f  is the source function, 
x

D  is the differential operator and M  

is the medium parameters (this matrix for different media is given in [4, 5]) operator and 

  is angular frequency. The wave vector u  satisfies the interface conditions. Equation 

(1) in the wave amplitude form is [2, 3]  

  0
,  a L a a L P T , (2) 

where 
 0

a  is the feasible source wavefield [6], T  is the transmission 

(reflection/refraction) operator and P  is the propagation operator. The solution is 

represented as [2, 3]  

        1 1

0

, 1, ,
n N

N n n n

n

n N


 



 
    

 
a P T a a a P T a  (3) 

 
    1

0

lim , lim
n N

Nn

N N
n




 


 
  

 
a a P T a 0 , (4) 

where 
 n

a  is n times transmitted (reflected/refracted) wavefield. Let us introduce a local 

perturbation of the medium. Equation (2) for the reference medium has the form  

 
 0

0 0 0 a L a a , (5) 

where  

 0 0,    L L L a a a . (6) 

mailto:aizenbergam@ipgg.sbras.ru
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We notice that the perturbed operator  L Ο  inside the local support only. Outside the 

local support  L Ο . Also notice that  a 0 . Substituting equation (2) in (5), we obtain  

    0 0  I L a I L a . (7) 

Substituting (6) in (7), we obtain  

    0 0 0    I L a I L a L a . (8) 

Since 0 1L  [2, 3, 6], we multiply equation (8) by  
1

0


I L  from the left and derive 

the Lipmann Schwinger equation in the general form  

  
1

0 0 


  a a I L L a . (9) 

If one wishes to obtain the scattering T -operator [7] for equation (9), it could be done as 

following. Multiplying (9) by L  from the left, we get  

  
1

0 0   


  L a L a L I L L a . (10) 

Notice that  L a 0  inside the local support. Solving equation (10) with respect to L a

, we obtain  

  
1

1

0 0  


   
 

L a I L I L L a . (11) 

In formula (11) we can introduce a T -operator as it was done in [7]  

 0T L a a  (12) 

with the generalized T -operator by formula  

  
1

1

0T  


   
 
I L I L L . (13) 

This operator generalizes T -operator from [7].  

3. Conclusions 

This work suggests a generalization of the classical Lippmann-Schwinger equation by 

TPOT. While the classical equation is used for wave motion problems in monophysics 

media, the new equation can be used for 3D blocky multiphysics media combining 

different media, for example: salt structures with porous fluid-saturated reservoirs.  
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4. Introduction 

There are various physical and numerical methods allowing appropriate modeling of 

multiphysics wavefields in multiscale effective models, for example: metal processing, 

composite material, oil and gas development, geophysical imaging and interpretation, 

fuel cell technology, biomedical tissue engineering etc. We propose TPOT&TWSM (the 

pure analytical Transmission-Propagation Operator Theory and its software package - the 

Tip-Wave Superposition Method). 

5. TPOT&TWSM technology for IBVP solution 

IBVP is conventionally formulated in terms of the kinematic and dynamic fields. TPOT 

[1] rewrites IBVP statement in terms of the multiphysics wave theory: unknown wave 

vector a  in form of mp  wave amplitudes  1 m

T

m n m n m n pa a  a  counter-propagating 

at n-th interface of m-th domain and IBVP in form of the transmission-propagation 

integral equation (TPIE) 
 1

 a TPa a . Here, 
   1 0
a T a  is the single transmitted 

wavefield, 
   0

0

N
n

n

a a  is the source wavefield,  0
a  is the conventional spherical wave 

and 
 

1

N
i

n

a  is the total diffraction at the boundary [2]. The transmission operator T  

contains the generalized plane-wave transmission(reflection/refraction) coefficients. The 

propagation operator P  in domains contains the polarization matrix and the feasible 

Kirchhoff-type surface integral operator accounting for the total diffraction [2]. The total 

solution is    1

1

N
N n

n





 a T P a a  with n-tuple transmitted wavefields 
   1n n
a T P a  

for 2n  . TWSM and highly-optimized TWSM [3] compute TPOT solutions  n
a  on a 

GPU cluster by approximation of operator TP  by nonsparse matrix. TWSM is valid in 

the multiscale range 10 / 99domh   , where h  and dom  are model size and dominant 

wavelength. TPOT&TWSM was compared with canonical analytical solutions [4], 

laboratory data [5] and numerical methods [6].  

6. UU- model solution separation: the creeping wave  

Figures 1 and 2 give a UU-model and an auxiliary W-model. Figure 3a-e illustrates 
       0 1 2 3

a , a , a , a  and  0
a  for UU-model where the terms of the 4th and higher order are 

negligibly small. Figure 4 gives  0
a  for W-model from [3]. Figure 5 represents the 

difference seismogram for UU- and W-models, which is the creeping wave occurring at 

curved boundary parts of UU-model and not occurring at the flat faces of W-model.  
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Figure 1. UU-model  Figure 2. 2D cross-sections 

UU- and W-models 
Figure 3a. UU-model: 

 0
a  

   

Figure 3b. UU-model: 
 1a  Figure 3c. UU-model: 

 2
a  Figure 3d. UU-model: 

 3
a  

   

Figure 3e. UU-model:  0
a  Figure 4. W-model:  0

a  [3] Figure 5. Difference UU-W  
 

7. Conclusions 

TPOT&TWSM does the solution separation for 3D multi-physics multi-scale media with 

curved interfaces. UU-model solution separation demonstrated the creeping wave.  
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